skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Quan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 25, 2026
  2. Free, publicly-accessible full text available April 25, 2026
  3. Social computing is the study of how technology shapes human social interactions. This topic has become increasingly relevant to secondary school students (ages 11--18) as more of young people's everyday social experiences take place online, particularly with the continuing effects of the COVID-19 pandemic. However, social computing topics are rarely touched upon in existing middle and high school curricula. We seek to introduce concepts from social computing to secondary school students so they can understand how computing has wide-ranging social implications that touch upon their everyday lives, as well as think critically about both the positive and negative sides of different social technology designs. In this report, we present a series of six lessons combining presentations and hands-on activities covering topics within social computing and detail our experience teaching these lessons to approximately 1,405 students across 13 middle and high schools in our local school district. We developed lessons covering how social computing relates to the topics of Data Management, Encrypted Messaging, Human-Computer Interaction Careers, Machine Learning and Bias, Misinformation, and Online Behavior. We found that 81.13% of students expressed greater interest in the content of our lessons compared to their interest in STEM overall. We also found from pre- and post-lesson comprehension questions that 63.65% learned new concepts from the main activity. We release all lesson materials on a website for public use. From our experience, we observed that students were engaged in these topics and found enjoyment in finding connections between computing and their own lives. 
    more » « less
  4. When groups of people are tasked with making a judgment, the issue of uncertainty often arises. Existing methods to reduce uncertainty typically focus on iteratively improving specificity in the overall task instruction. However, uncertainty can arise from multiple sources, such as ambiguity of the item being judged due to limited context, or disagreements among the participants due to different perspectives and an under-specified task. A one-size-fits-all intervention may be ineffective if it is not targeted to the right source of uncertainty. In this paper we introduce a new workflow, Judgment Sieve, to reduce uncertainty in tasks involving group judgment in a targeted manner. By utilizing measurements that separate different sources of uncertainty during an initial round of judgment elicitation, we can then select a targeted intervention adding context or deliberation to most effectively reduce uncertainty on each item being judged. We test our approach on two tasks: rating word pair similarity and toxicity of online comments, showing that targeted interventions reduced uncertainty for the most uncertain cases. In the top 10% of cases, we saw an ambiguity reduction of 21.4% and 25.7%, and a disagreement reduction of 22.2% and 11.2% for the two tasks respectively. We also found through a simulation that our targeted approach reduced the average uncertainty scores for both sources of uncertainty as opposed to uniform approaches where reductions in average uncertainty from one source came with an increase for the other. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)